Square-Full Divisors of Square-Full Integers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full Square Rhomboids and Their Algebraic Expressions

The paper investigates relationship between algebraic expressions and graphs. We consider a digraph called a full square rhomboid that is an example of non-series-parallel graphs. Our intention is to simplify the expressions of full square rhomboids and eventually find their shortest representations. With that end in view, we describe two decomposition methods for generating expressions of full...

متن کامل

On Integers for Which the Sum of Divisors is the Square of the Squarefree Core

We study integers n > 1 satisfying the relation σ(n) = γ(n)2, where σ(n) and γ(n) are the sum of divisors and the product of distinct primes dividing n, respectively. We

متن کامل

A Star-based Independent Biclique Attack on Full Rounds SQUARE

Abstract. SQUARE is an iterated block cipher proposed by Daemen et.al. in FSE1997. Inspired by Bogdanov et.al.’s recent works [12], we first present an improved biclique attack, i.e. stat-based independent biclique attack on full rounds SQUARE in this paper. We construct a one round stat-based independent biclique for the initial round, and utilize matching with precomputation techniques to rec...

متن کامل

Bases and Nonbases of Square-Free Integers

A basis is a set A of nonnegative integers such that every sufficiently large integer n can be represented in the form n = a + a i with a , ai e A . If A is a basis, but no proper subset of A is a basis, then A is a minimal basis . A nonbasis is a set of nonnegative integers that is not a basis, and a nonbasis A is maximal if every proper superset of A is a basis . In this paper, minimal bases ...

متن کامل

On Comparing Sums of Square Roots of Small Integers

Let k and n be positive integers, n > k. Define r(n, k) to be the minimum positive value of | √ a1 + · · ·+ √ ak − √ b1 − · · · − √ bk| where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n. It is an important problem in computational geometry to determine a good upper bound of − log r(n, k). In this paper we prove an upper bound of 2O(n/ logn), which is better tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Integers

سال: 2010

ISSN: 1867-0652

DOI: 10.1515/integ.2010.020